Zinc and Aluminum Corrosion Product Release During a PWR LOCA Event

Timothy S. Andreychek
Westinghouse Electric Company
412-374-6246
andreyts@westinghouse.com

Objectives

- Measure corrosion, corrosion product release from zinc and aluminum alloys under representative post-LOCA conditions
- Characterize corrosion product debris
- Measure time dependent collection of corrosion product debris
- Measure the effects of the most important chemical variables on corrosion product release and collection

Test Considerations

- Simulate containment operation after a LOCA
 - Variables representative of post-accident
 - Chemistry
 - Temperature
 - Flow to levels representative of containment post-accident
 - Values selected to span range of conditions for a LOCA
- Generate corrosion products, characterize debris
 - Corrosion rate
 - Corrosion product release rate
 - Form of the corrosion products from different sources
 - Emphasize species affecting filter bed performance

. Test Simulation Assumptions

- No attempt made to model containment chemistry within the first few minutes of a LOCA
 - Large variation of chemistry depending on break size and location
 - However, relative to total corrosion, little corrosion will take place during this short time period
 - Elimination of this time period is reasonable
- · Iron not considered a corrosion product source
 - Structural steel in containment coated
 - Other exposed surfaces are limited
 - Corrosion rates in range of pH tested small

Independent Test Parameters

Initial proposed list of parameters

Variable	Maximum Values	Minimum Values		
Simulated Sump Temperature (T _{sump})	138℃ to 73℃	118℃ to 53℃		
Containment Surface Temperature	T _{sump} + 20°C	T _{sump} - 20°C		
Submersion of Corroding Surface	Intermittent Submersion	Continuous Submersion		
Trisodium Phosphate	1.6 E-1 M	2E-03 M		
HCI-	100 ppm	0		
Aeration	Air Saturated	Deaerated		
Flow/Agitation	0.5 feet per second	0.1 feet per second		

Test Matrix Design

- Major considerations in developing test matrix
 - Corrosion chemistry product formation, release, and precipitation reactions are complex
 - Experimental design selected to allow for significant effects of each variable to be determined efficiently
 - Approach allows test matrix to be easily expanded to provide additional information
 - · Variable interactions of constituents
 - · Reproducibility of results

Initial Test Matrix

Initial proposed test matrix

Run	Sump Temperature	Containment Temperature	Submersion	Trisodium Phosphate	13C1	Aeration	Agliation / Flow
1	Min Values	Min Values	Min Values	Max Values	Max Values	Max Values	Min Values
2	Max Values	Min Values	Min Values	Min Values	Min Values	Max Values	Max Values
3	Min Values	Max Values	Min Values	Min Values	Max Values	Min Values	Max Values
4	Max Values	Max Values	Min Values	Max Values	Min Values	Min Values	Min Values
5	Min Values	Min Values	Max Values	Max Values	Min Values	Min Values	Max Values
6	Max Values	Min Values	Max Values	Min Values	Max Values	Min Values	Min Values
7	Min Values	Max Values	Max Values	Min Values	Min Values	Max Values	Min Values
8	Max Values	Max Values	Max Values	Max Values	Max Values	Max Values	Max Values

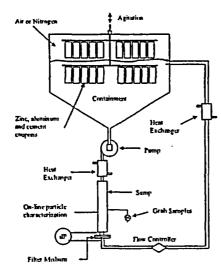
Proposed Test Materials

• Test coupons representative of containment material

- Galvanized steel

: hot dipped and electroplated

- Aluminum alloys


: 6061-T6 and 5052

- Steel with zinc primers
- Concrete
- Representative coupon surface areas used to obtain meaningful data

Proposed Test Setup

- Exposure of test coupons:
 - Totally submerged
 - Alternately submerged and removed from solution
 - Dunking approach proposed to simulate spray is expected to give results comparable to spray
 - Speed varied simulate different fluid flow conditions within containment
 - Corroding surface experiences both liquid and gas phases and liquid coverage over time

Schematic of Test Facility

- Closed loop design
- · Heat exchangers
 - cool exiting fluid
 - heat returning fluid
- May be modified to:
 - Use spray instead of dunking
 - Use multiple filters in parallel

Proposed Test Operation

- New coupons weighted and installed for each run
- A fraction of coupons removed after 20 hours
 - Coupons will be weighed
 - Oxidized fraction will be determined
- After run is complete
 - Remaining coupons will be weighed
 - Fraction of oxide and metal will be determined
- Supports calculating corrosion product release for materials as a function of temperature and time

Proposed Test Operation

- · Test atmosphere
 - Air
 - Hydrogen not included
 - Negligible effect on redox potential and corrosion at test conditions
- Solution volume
 - Representative zinc surface area to volume ratio used to obtain meaningful corrosion data
- Solution chemistry (typical of sump)
 - 2500 ppm boron from boric acid
 - 0.1 ppm Lithium from lithium hydroxide

Solution pH Control

- pH control agents
 - Trisodium phosphate (TSP) selected
 - Similar pH behavior with TSP and NaOH
 - · TSP a user friendly chemical
 - Two tests with NaOH to be run to confirm
 - Hydrochloric acid (HCl), formed from degradation of cable insulation material
 - pH range, bounding long term sump pH
 - pH = 9.5, corrected to 25°C
 - pH = 6.5, corrected to 25°C

Other Species in Solution

- Calcium, magnesium and silicon will be present from concrete dissolution
- Levels will not be controlled directly
 - They will be allowed to evolve as dictated by the variables that effect concrete dissolution
- Similarly, corrosion products will be added to solution from the corroding aluminum, zinc coatings and underlying exposed steel
 - Concentrations will be measured but controlled only by chemical and physical conditions that effect corrosion and dissolution

Sump Fluid Temperature

 Sump solution temperature approximates time history for a large break LOCA

- Maximum initial temperature:

128°C (262°F)

- Hold for 20 hours

- Within 24 hours, decreases to:

68°C (155°F)

- By 48 hours, steady state value:

63°C (145°F)

- Maintain temperature for an additional 48 hours

- Each test run until either:

- · Steady state conditions reached, or,
- Test duration reaches 96 hours

Monitoring Corrosion Effects

- · Grab samples taken daily
 - Analyzed for particulate and dissolved material
 - At a minimum, Zn, Al, Si, Fe, Ca, Mg, Sn, Pb, Na, P, and Cl will be looked for
 - Rationale for looking for these elements
 - They are related to the corrosion process
 - They directly affect corrosion product solubility and crystallization / nucleation
 - They may potentially initiate coagulation
 - pH will be measured.

Monitoring Particulates

- On-line measurement of particulate content may be made
 - Turbidity may be measured
 - If the concentration of particulates is high enough, online particle size distribution measurement may be performed

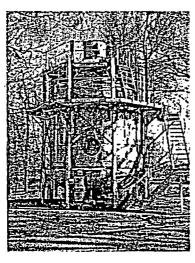
Recirculating Sump Fluid

- · Recirculating flow
 - Constant linear flow rate of 0.3 ft/sec
 - Fine filters used to collect particulates
- Pressure drop measurements
 - Initial measurements across clean filter
 - Pressure drop across filters monitored continuously throughout test
 - Test will be terminated if pressure drop becomes excessive for test facility

Data Evaluation

- Effects of the independent variables (e.g. submersion) on the dependent variables (e.g. rate of corrosion product release) determined by simple averaging
- · Investigate effect of derived variables such as pH
- · Filters analyzed for entrained particle composition
 - Use Scanning Electron Microscopy (SEM) combined with elemental analysis using Energy Dispersive X-Ray Emission Spectroscopy (EDS)
 - Weight gain from filtered material is to also be measured
 - X-ray diffraction may also be performed if sufficient material is collected for analysis (approximately 1 mg)

Discussion


- Proposed experiment will determine the main effects of seven dominant variables on zinc and aluminum corrosion and corrosion product release
 - Results will be used to assess potential for sump screen plugging
 - Corrosion product release information will also be used in more detailed time/temperature/position modeling
- Output from experimental program will be an equation for corrosion product release for each alloy
 - Temperature, pH, aeration and flow will be the inputs
 - Output will be predicted corrosion rate and corrosion product release

Candidate Facility #1

- Existing facility
 - Existing autoclave in a high bay area
 - Total system volume of <5 gallons is planned
 - Small containment simulation
 - Suitable for parametric studies
- Concerns
 - Small volume
 - May be limited with respect to sprays and coupon submergence

Candidate Facility #2

- Existing facility
 - Used for AP600 containment heat transfer tests
 - Large scale and volume
 - May be modified to:
 - Add recirculating loop
 - · Add sprays
- Concerns
 - More suitable for integrated tests, not parameter studies
 - Costly to refurbish, modify, operate and clean up

Summary

- Test plan to determine corrosion product release following a postulated LOCA has been defined
 - Variables effecting corrosion are varied to span expected conditions
 - Corrosion rates and corrosion product release rates are measured for concrete and pertinent zinc and aluminum materials
 - The mass of corrosion products is collected and measured
 - The pressure across the filter will also be measured.
- Data gathered from the tests will be used to develop a corrosion release model
 - Model inputs include temperature, flow, submersion, pH and aeration
 - Model outputs are corrosion product release rates
- Candidate facilities identified